Even when people are manipulating algebraic equations, they still associate numerical magnitude with space
نویسندگان
چکیده
The development of symbolic algebra transformed civilization. Since algebra is a recent cultural invention, however, algebraic reasoning must build on a foundation of more basic capacities. Past work suggests that spatial representations of number may be part of that foundation, but recent studies have failed to find relations between spatial-numerical associations and higher mathematical skills. One possible explanation of this failure is that spatial representations of number are not activated during complex mathematics. We tested this possibility by collecting dense behavioral recordings while participants manipulated equations. When interacting with an equation’s greatest [/least] number, participants’ movements were deflected upward [/downward] and rightward [/leftward]. This occurred even when the task was purely algebraic and could thus be solved without attending to magnitude (although the deflection was reduced). This is the first evidence that spatial representations of number are activated during algebra. Algebraic reasoning may require coordinating a variety of spatial processes.
منابع مشابه
Bernoulli collocation method with residual correction for solving integral-algebraic equations
The principal aim of this paper is to serve the numerical solution of an integral-algebraic equation (IAE) by using the Bernoulli polynomials and the residual correction method. After implementation of our scheme, the main problem would be transformed into a system of algebraic equations such that its solutions are the unknown Bernoulli coefficients. This method gives an analytic solution when ...
متن کاملNumerical solution of Voltra algebraic integral equations by Taylor expansion method
Algebraic integral equations is a special category of Volterra integral equations system, that has many applications in physics and engineering. The principal aim of this paper is to serve the numerical solution of an integral algebraic equation by using the Taylor expansion method. In this method, using the Taylor expansion of the unknown function, the algebraic integral equation system becom...
متن کاملSevere Impact on the Behavior of Energy Absorbing Cylindrical Base in Frontal Impact
In this paper, the vibration characteristics of multi-layer shell that internal and external surfaces with a layer of piezoelectric sensor and actuator is investigated. The backrest shell laminated with simple analytical method to evaluate and the results were compared with results obtained by other researchers. The numerical solution methods (GDQ) for shells with piezoelectric layers and plain...
متن کاملA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
متن کاملOn the split-step method for the solution of nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative
The aim of this paper is to extend the split-step idea for the solution of fractional partial differential equations. We consider the multidimensional nonlinear Schr"{o}dinger equation with the Riesz space fractional derivative and propose an efficient numerical algorithm to obtain it's approximate solutions. To this end, we first discretize the Riesz fractional derivative then apply the Crank-...
متن کامل